Coffee & Conversation with Ivan Oransky

Graduate students, post-docs, and research trainees are invited to meet informally with Dr. Oransky to discuss research rigor, retractions, and other insights into the scientific process.

- Co-founder of Retraction Watch in 2010
- Distinguished Writer in Residence at the NYU Arthur Carter Journalism Institute
- Managing editor online for Scientific American
- Deputy editor The Scientist

Thursday, April 19, 2018
12:30 pm – 2:00 pm
Ben Pomeroy Student-Alumni Learning Center, Room 215
College of Veterinary Medicine, St. Paul Campus

Sponsored by: College of Veterinary Medicine & College of Biological Sciences
Managing Research Data to Improve Research Reproducibility
Got data? We're here to help you manage, share, and preserve your research data. In addition to our Data Repository for the U of M curation services, the Libraries will help you navigate available campus resources throughout the data lifecycle:

Before Your Research Begins

- Schedule a data management plan (DMP) consultation (Request Form) or use our Explore funding agency requirements for data and learn best practices for getting IRB approval for sharing data.
- See more tools for planning for data management

During Your Research

- Attend workshops and explore online training resources on best practices for data management
- Get help creating documentation and using metadata standards
- Discover appropriate U of M services for data, such as data storage
- See more tools for managing your data during your research

After Your Research Ends

- Share your data broadly in the Data Repository for U of M
- Self-archive your data in a disciplinary repository
- See more tools for archiving and sharing your data after your research ends
What counts as data?

Data are...
○ Lab results
○ Computer simulations
○ Survey results
○ Observations
○ Interviews
○ Textual analysis
○ Audio, video, multimedia
○ Metadata
○ And more....
What data aren’t...

- preliminary analyses
- drafts of scientific papers
- plans for future research
- peer reviews, or communications with colleagues
- physical objects (e.g., laboratory samples)
- trade secrets or commercial information
- materials necessary to be held confidential by a researcher until they are published, or similar information which is protected under law
What’s data management?

Managing data involves:

- Knowing what types of data you have
- Having a plan for documentation
- Preventing data loss or unwanted access
- Sharing (or not sharing) your data as appropriate
- Keeping your data accessible in the future

A data management plan (or DMP) is a document that articulates how these goals will be accomplished.
Why manage data?

Because

- Data management is tied to the responsible conduct of research
- Data are very valuable and collecting/generating data is an expensive and time-consuming process
- Managing data means that data can be reused in new and interesting ways, both by yourself and others
- You may be legally required to
Federal Agencies with plans to date

- Department of Agriculture (USDA)
- Department of Transportation (DOT)
- Department of Commerce
 - National Institute of Standards and Technology (NIST)
 - National Oceanic and Atmospheric Administration (NOAA)
- Department of Defense (DOD)
- Department of Education
 - Institute of Education Sciences (IES)
- Department of Energy (DOE)
- Environmental Protection Agency (EPA)
- National Aeronautics and Space Administration (NASA)
- National Science Foundation (NSF)
- Department of Health & Human Services (HHS)
 - Food and Drug Administration (FDA)
 - Center for Disease Control and Prevention (CDC)
 - Administration for Community Living (ACL)
 - Agency for Healthcare Research & Quality (AHRQ)
 - Assistant Secretary for Preparedness and Response (ASPR)
 - National Institutes of Health (NIH)
- Department of Veterans Affairs (VA)
- Smithsonian Institution
- US Geological Survey (USGS)
It’s not just federal funders...

- Private funders
 - Bill and Melinda Gates Foundation
 - Sloan Foundation
 - Ford Foundation

- Journals
 - *Science*
 - *Nature*
 - *PLoS ONE*
 - *PNAS*

And many others...
Fatalism is useful
Because human beings forget

- Data inventories
- Strategies for documentation
- File naming conventions
- Folder structure and organization

Metadata: Data about Data

- Describes and provides context for data
- Metadata schemes = project level metadata
- File properties (title, creator, date) = file level metadata
- Spreadsheet headings, labels = item level metadata

Good Documentation Practices (GDPs): a systematic approach to preparing, approving, storing, and archiving documentation

<table>
<thead>
<tr>
<th>Scientist Name/Role</th>
<th>Department</th>
<th>PI</th>
<th>Project</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 PROJECT MANAGEMENT

Examples of Documentation

- A Project Plan exists
- Procedures are in place for periodic audit/assessment to monitor compliance with RQA best practices.

2 PERSONNEL

Examples of Documentation

- A current organization chart illustrates the research roles and reporting lines.
- Personnel are qualified (education, experience) to perform tasks and initial/ongoing training is conducted and documented.
- Job descriptions, signature/initiation logs, resumes and CVs are current for research staff and students.

3 FACILITIES

Examples of Documentation

- Procedures exist to keep the lab and storage areas clean and orderly to reduce risk of contamination.
- Security procedures are implemented to prevent the access of unauthorized personnel.
- Storage areas are provided for the safe and secure storage of all documentation and also for samples and materials associated with research.
- A Lab Safety plan exists and safety audit reports are maintained.
- Environmental control systems are available if needed to provide a stable environment for the research being conducted.

4 EQUIPMENT

Examples of Documentation

- An equipment inventory list is maintained.
- Financial support (budgeted) for equipment care has been established.
- Equipment use records are maintained.
- Equipment manuals are available.
- SOPs or manuals address methods, materials, schedules for:
 - Routine inspection (e.g., safety, verification)
 - Preventive Maintenance
 - Operation (e.g., set-up, clean-up, use)
 - Calibration and/or standardization
Basics of Documentation

◎ At a minimum, note:
 ○ How and where you got that piece of data
 ○ Any changes that were made to clean or refine it
 ○ All analyses conducted and all findings, whether expected or not

◎ Don’t just record what was done, record how it was done, why, when, and who did it
 ○ “If it isn’t documented, it didn’t happen”
Attributable: signed, dated, any changes attributed

Legible: can be easily read and understood

Contemporaneous: data recorded immediately as generated

Original: original data, or if not original, location of the original source is included and accuracy confirmed

Accurate: clean, objective recording including all contextual and explanatory information
This codebook.txt file was generated on <YYYYMMDD> by <Name>

GENERAL INFORMATION

1. Title of Dataset

2. Author Information

 Principal Investigator Contact Information
 Name:
 Institution:
 Address:
 Email:

 Associate or Co-investigator Contact Information
 Name:
 Institution:
 Address:
 Email:

 Associate or Co-investigator Contact Information
 Name:
 Institution:
 Address:
 Email:

3. Date of data collection (single date, range, approximate date) <suggested format YYYYMMDD>

4. Geographic location of data collection (where was data collected?):

5. Information about funding sources that supported the collection of the data:
Data Inventories

What is it?
- Title
- Author
- Description
- Date created

Who Owns it?
- Department Owner
- Author
- Contact (Responsibility)

Who can access it?
- Restrictions in place
- Users who have access
- Protocol for handling requests

What does it consist of?
- How many files
- Where are they stored
- File size
- Growth Rate
- Are there multiple versions

How Secure is it?
- Uniqueness
- Protections in place
- Back-up locations (2 or more)
- Procedure for format migration
- Retention period
File Naming Conventions
Descriptive File Naming

Elements to consider when naming files

- Date
- Project name
- Type of data
- Location/site/spatial coordinates
- Researcher info
- Version
Best Practices

◎ Don’t rely on nesting in folders
 2016/fall/project/data/script.R

◎ Be descriptive
 Bad: outline.docx
 Better: pubh6646_outline.docx
 Best: seminar_pubh6646_notes.docx
Best Practices

◎ Use numerical dates
 YYYYMMDD rather than Aug15

◎ Avoid file names with UPPERCase letters, weird characters (/,#?), or spaces between words
Best Practices

◎ Use consistent structure that falls into useful order (for sorting) and decide if shared terminology is necessary

◎ List versions alphanumerically
 Bad: draft, finaldraft, reviseddraft
 Better: v1, v2, v3
 Best: v01, v02, v03
Folder Structures

Be shallow

Avoid duplication
File/Folder Organization

Possible strategies:

- **By stage:** collection materials, raw data, processed data, shared data
- **By data type:** databases, text, images, models, etc.
- **By research activities:** interviews, surveys, experiments, etc.
- **By materials:** data, documentation, publications, etc.
Because nothing lasts forever

Back up Obsolescence Preservation

3-2-1 Rule

Have 3 copies of your work
On 2 different types of media
With at least 1 remote copy
<table>
<thead>
<tr>
<th>Storage Options</th>
<th>Sensitive data</th>
<th>Non-public data</th>
<th>Self-managed collaboration</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHC managed servers</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Box Secure Storage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Encrypted Drive/Container</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Shared/Personal drive</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>UMN Google Drive</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Dropbox</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Amazon (personal)</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Email</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
Backup ≠ Preservation

You can back up your data, and still end up with this...

Media Failure: A storage medium no longer functions or functions inadequately

Software Obsolescence: When software no longer runs on current operating systems or is replaced by later versions of software
Bit-level corruption

The data becomes “scrambled” and systems can no longer read it.
Preservation Steps

◎ Only keep what you need
◎ Copy your local files onto new storage media every few years
◎ Convert your files into open or more accessible file formats
◎ Allocate resources to do this preservation work
Digital Preservation

Best practice: an uncompressed, non-proprietary version of data files

<table>
<thead>
<tr>
<th>For this...</th>
<th>Use this...</th>
<th>Not this...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text</td>
<td>.pdf, .txt, .html</td>
<td>.docx</td>
</tr>
<tr>
<td>Images</td>
<td>.tiff</td>
<td>.psb</td>
</tr>
<tr>
<td>Tabular Data</td>
<td>.csv</td>
<td>.xlsx</td>
</tr>
<tr>
<td>Video/Media</td>
<td>.mp4</td>
<td>.wmv, .arf, .mov</td>
</tr>
</tbody>
</table>
A long-term data sharing and preservation plan will be used to store and make publicly accessible the data beyond the life of the project. The data will be deposited into the Data Repository for the University of Minnesota (DRUM), http://hdl.handle.net/11299/166578. This University Libraries’ hosted institutional data repository is an open access platform for dissemination and archiving of university research data. Date files in DRUM are written to an Isilon storage system with two copies, one local to each of the two geographically separated University of Minnesota Data Centers. The local Isilon cluster stores the data in such a way that the data can survive the loss of any two disks or any one node of the cluster. Within two hours of the initial write, data replication to the 2nd Isilon cluster commences. The 2nd cluster employs the same protections as the local cluster, and both verify with a checksum procedure that data has not altered on write. In addition, DRUM provides long-term preservation of digital data files for at least 10 years using services such as migration (limited format types), secure backup, bit-level checksums, and maintains a persistent DOIs for data sets, facilitating data citations. In accordance to DRUM policies, the (deidentified, if applicable) data will be accompanied by the appropriate documentation, metadata, and code to facilitate reuse and provide the potential for interoperability with similar data sets.
Now (some of) the trickier stuff...
HIPAA (Health Insurance Portability and Accountability Act): ensures the privacy of patients' medical information

FERPA (Family Educational Rights and Privacy Act): ensures the privacy of students' educational records

FISMA (Federal Information Security Management Act): ensures the protection of government information and information systems
Privacy & Sensitive Data

There are 18+ HIPAA Identifiers

1. Name
2. All geographic divisions smaller than a state
3. ◎ All elements of dates, except the year (includes date of birth, admission date, discharge date, date of death, etc.)
◎ All ages over 89 (aggregate category of individuals 90 and older)
4. Phone number
5. Fax number
6. E-mail address
7. Social security number
8. Medical record number
9. Health plan number
10. Account numbers
11. Certificate or license numbers
12. Vehicle identification/serial numbers, including license plate numbers
13. Device identification/serial numbers
14. Universal resource locators (URLs)
15. Internet protocol (IP) addresses
16. Biometric identifiers
17. Full face photographs and comparable images
18. Any other unique identifying number, characteristic, or code
Privacy & Sensitive Data

HIPAA variables are **direct identifiers** (pieces of information that clearly point to one individual)

There are also **indirect identifiers**

- Combinations of variables that together can identify an individual
- No set list of variables, depends on your data set and what other data sets are available
“Data can be either perfectly useful or perfectly anonymous but never both.”

Prior or During Collection

Get consent to share and avoid overly restrictive language in the informed consent process
- Some suggestions for language are available here: http://www.icpsr.umich.edu/icpsrweb/content/datamanagement/confidentiality/conf-language.html

Don’t “identify” in the data creation process
- When recording audio, do not use names, place of employment, or other information
- Arrange with participants to use pseudonyms

For audio and video, bleep out names and blur faces or other identifying characteristics
After Data Collection

Some Potential Strategies:
- Eliminate the variable entirely from the dataset
- Recoding variables into broader categories
- Top-coding (restricting the upper range of a variable)
- Match unique cases on the indirect identifier, then exchange the values of key variables between the cases

Best Practice:
- Be cautious of small subgroups and cases with outliers
- Clearly mark any replacements in the data using brackets, tags, or another consistent method
- Keep a secure copy of the non-anonymized data
- Create a log of all the replacements, aggregations, or removals made in each data file. Store this log file separately from the de-identified data
Some Strategies for Securing Data

Authentication (password protected)
 ○ For files, programs, machines, etc.

Firewalls

Encrypted files

Physical security

Secure data deletion and secure disposal
Do we really need to know about all this?

* This (and more) is the type of information covered in a DMP
* Different elements will be more or less important depending on the type of data
* Knowing about ≠ knowing everything or memorizing
Resources

- DMPTool: https://dmp.cdlib.org/
- DMP Template & Checklist: z.umn.edu/dmptemplate
- readme.txt (project-level documentation): z.umn.edu/readme
- OIT Storage & Data Protection Services: https://z.umn.edu/19up
Caitlin Bakker
Research Services Librarian
cjbakker@umn.edu
612-301-1353

Rebecca Davies, PhD
Director, Quality Central
rdavies@umn.edu
612-626-0168
Thank You!

Questions? Comments?